
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 15: Scheduling

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. CPU scheduling.

2. Project 3 due July 27.

2

Agenda
1. CPU scheduling.

2. Project 3 due July 27.

3

CPU scheduling
If more than one thread is ready,
the OS must choose which one to
run.

Many possible scheduling policies;
we’ll explore a few.

Real schedulers often employ a
complex mix of policies.

4

Commonly-used policies

FCFS
Round robin
STCF
Priority
Proportional share
EDF

Scheduling: Goals
What are good goals for a CPU scheduler?
1. Minimize average response time (latency).
2. Maximize throughput.
3. Fairness.
4. Ensure every thread makes progress.
5. …

But minimizing latency and maximizing throughput are
often conflicting goals.

5

Load
testing

6

With software
systems, we
actually do test
them by breaking
them.

Throughput-response curve for a Facebook video service

7

These are
curves for a
Facebook video
service that was
investigating
reducing video
quality when
facing heavy
load.

Latency is the
response time.

Higher quality
images take
more time.

Colors represent % degradation in streaming video quality.

Collected from Facebook production service [Chow ‘16]

Throughput-response curve for a Facebook video service

8

Colors represent % degradation in streaming video quality.

Collected from Facebook production service [Chow ‘16]

At first, adding
load has little
effect on
latency.

Requests per
minute * latency
< 1 minute.

The system is
idle sometimes
and can easily
keep up.

Throughput-response curve for a Facebook video service

9

Colors represent % degradation in streaming video quality.

Collected from Facebook production service [Chow ‘16]

But then it
suddenly begins
rising
exponentially.

Requests per
minute * latency
approaching 1
minute.

The system is
rarely idle and
can barely keep
up.

Throughput-response curve for a Facebook video service

10

Colors represent % degradation in streaming video quality.

Collected from Facebook production service [Chow ‘16]

Completely
saturated.
Latency has
fallen off a cliff.

Requests per
minute * latency
> 1 minute.

With every
minute, the
system is falling
further behind.

(This is why
they will
degrade under
load to avoid
saturation.)

Fairness
Share CPU among threads in equitable manner.

How to share between one big and one small job?
Response time proportional to job size?
Or equal time for each job?

Fairness often conflicts with response time.

11

Starvation = extremely unfair
Starvation can be outcome of synchronization.

Example: Readers can starve writers.

Starvation can also be outcome of scheduling.
Example policy: Always run highest-priority thread.
If many high priority threads, low priority starves.
Would like to ensure all threads eventually make
progress if they can.

12

First-come, first-served (FCFS)
FIFO ordering among jobs.

No preemption (no timer interrupts).
Thread runs until it calls yield() or blocks.

13

FCFS Example

A’s response time = 100
B’s response time = 101
Average response time = 100.5

14

t = 0 100 101

A B

Job A: Arrives at t=0, takes 100 seconds
Job B: Arrives at t=0+, takes 1 second

FCFS Summary

Pros:
Simple to implement

Cons:
Short jobs can be stuck behind long ones
Bad for interactive workloads

15

Round Robin

Improve average response time for short jobs

Add preemptions (via timer interrupts)
Fixed time slice (time quantum)
Preempt if still running when time slice is over

16

Round Robin Example

A’s response time = 101
B’s response time = 2
Average response time = 51.5

17

t = 0 1 2

A B A

101

Job A: Arrives at t=0, takes 100 seconds
Job B: Arrives at t=0+, takes 1 second
Assume the quantum is 1 second

Choosing a time slice
What’s the problem with a big time slice?

Degenerates to FCFS and poor interactivity.

What’s the problem with a small time slice?
More context switching overhead and lower
throughput.

OS typically compromises, e.g., 1 ms or 10 ms.

18

Round Robin Summary
Pros

Still pretty simple.
Good for interactive computing.

Cons
More context-switching overhead.

Does RR always reduce avg response time vs. FCFS?

19

Round Robin vs. FCFS

Average response time with FCFS = 150
Average response time with RR = 199.5

20

t = 0 1 2

A B A

3

t = 0 100 200

A B

A B

199 200

Which is more
fair? RR or FCFS?

Jobs A and B arrive at t = 0 and 0+, both take 100 secs

FCFS

RR

STCF
Shortest time to completion first.

Run job with least work to do.
Preempt current job if shorter job arrives.
Job size is time to next blocking operation.

Finish short jobs first.
Improves response time of short jobs (by a lot).
Hurts response time of long jobs (by a little).

STCF gives optimal average response time.

21

Analysis of STCF

Consider 2 jobs: A longer than B
Average response time (2A + B) / 2 vs. (A + 2B) / 2
B < A, so running B first has a smaller average response time.
Keep the list sorted by estimated time to completion, pick the
shortest to minimize response time.

22

A B

AB

STCF Example

A’s response time = 101
B’s response time = 1
Average response time = 51 (RR was 51.5)

23

t = 0+ 1

B A

101

Job A: Arrives at t=0, takes 100 seconds
Job B: Arrives at t=0+, takes 1 second

STCF
Pro

Optimal average response time.

Cons
Potential starvation for long jobs (really unfair!)
Needs knowledge of future.

How could you estimate the time a job will run for?

24

Predicting job run times
Ask the job or the user?

Strong incentive to lie (“will just take a minute”)

Use past to predict future
Can assume heavy-tailed distribution

If already run for n seconds, likely to run for n more

OS schedulers often identify interactive apps and boost
their priority

25

Priority
Priority

Assign external priority to each job
Run high-priority jobs before low-priority ones
Use, e.g., round-robin for jobs of equal priority
Prone to starvation

Methods for preventing starvation?
If job has not run for time t, boost priority
Handle priority inversion (lock held by low-priority)

26

27

Priority Inversion

x->Acquire()

x->Acquire()

x->Release()
time

PH

PL

x->Acquire()

x->Acquire()

time

PH

PL

PM

Normal pattern of sharing resources.

Priority inversion. The middle priority job runs indefinitely.

Priority inversion
Strategies:

1. Analyze the dependencies. If a high priority thread is
waiting on a resource held by a lower priority thread,
boost the lower priority thread.

2. Windows NT: Randomly boost threads.

28

Hard real-time scheduling
Jobs have to complete before deadline.

Demand / deadline known in advance.
Examples: Vehicle control, aviation, etc.

Earliest-deadline first (EDF).
Always run jobs whose deadline is soonest.
Preempt if newly arriving job has earlier deadline.
Always succeeds if schedule is feasible.
But, may be very poor if schedule is infeasible.

30

CPU scheduling
How would you choose?

Suppose you were scheduling the
checkout in a grocery store?
Would you have a queue per
checkout or a single queue?

Real schedulers often employ
heuristics and complex tuning.

31

Commonly-used policies

FCFS
Round robin
STCF
Priority
Proportional share
EDF

Agenda
1. CPU scheduling.

2. Project 3 due July 27.

32

Project 3
Process view:
1. Every process has an address space starting from

VM_ARENA_BASEADDR of size VM_ARENA_SIZE.
2. When a process starts, the entire address space is invalid.
3. Process calls vm_map to make pages valid.
4. Pages becomes invalid when a process ends.

Pager view:
1. One process runs at a time.
2. Sets up page table that the MMU uses for translation.
3. Handles vm_create, vm_map, and vm_fault.

33

Project 3
Swap-backed pages:
1. Global swap file shared by all processes.
2. Pager controls where pages are stored in the swap file.
3. Individual pages are private to a process.

File-mapped pages:
1. Process specifies the file and offset.
2. Can be shared across processes.

34

Project 3: App vs. OS

Protection
All pages can be read from and written to.
Using R/W bits to track reference, dirty, etc.

Sharing
File-backed pages.
Copy-on-write.

35

Project 3
1. Do the project incrementally.

2. Swap-backed pages only without fork.

3. Then add support for fork and file-backed pages one after the
other.

4. Pro Tip: Start with state diagrams for swap-backed, file-backed
pages.

36

Project 3: State Diagram
For each unique state, consider:
1. Transitions? Read, write, clock, copy, ...
2. Attributes? Valid, resident, dirty, ...
3. Protections? Enable read, enable write?

37

Mapped

Valid: Yes
Resident: Yes
Dirty: No
Zero-filled: Yes
....

Written

Valid: Yes
Resident: Yes
Dirty: Yes
Zero-filled: No
....

Write

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 15: Scheduling
	Agenda
	Agenda
	CPU scheduling
	Scheduling: Goals
	Load testing
	Throughput-response curve for a Facebook video service
	Throughput-response curve for a Facebook video service
	Throughput-response curve for a Facebook video service
	Throughput-response curve for a Facebook video service
	Fairness
	Starvation = extremely unfair
	First-come, first-served (FCFS)
	FCFS Example
	FCFS Summary
	Round Robin
	Round Robin Example
	Choosing a time slice
	Round Robin Summary
	Round Robin vs. FCFS
	STCF
	Analysis of STCF
	STCF Example
	STCF
	Predicting job run times
	Priority
	Priority Inversion
	Priority inversion
	Hard real-time scheduling
	CPU scheduling
	Agenda
	Project 3
	Project 3
	Project 3: App vs. OS
	Project 3
	Project 3: State Diagram

